|
|- |bgcolor=#e7dcc3|Conway notation||tA4 |- |bgcolor=#e7dcc3|Faces||18: 2 , 8 , 8 |- |bgcolor=#e7dcc3|Edges||48 |- |bgcolor=#e7dcc3|Vertices||32 |- |bgcolor=#e7dcc3|Symmetry group||''D''''4d'', (), (2 *4), order 16 |- |bgcolor=#e7dcc3|Rotation group||D''4'', ()+, (224), order 8 |- |bgcolor=#e7dcc3|Dual polyhedron|| |- |bgcolor=#e7dcc3|Properties||convex, zonohedron |} The truncated square antiprism one in an infinite series of truncated antiprisms, constructed as a truncated square antiprism. It has 18 faces, 2 octagons, 8 hexagons, and 8 squares. If the hexagons are folded, it can be constructed by regular polygons. Or each folded hexagon can be replaced by two triamond, adding 8 edges (56), and 4 faces (32). This form is called a ''gyroelongated triamond square bicupola''. :240px == Related polyhedra == (v:6; e:12; f:8) | s (v:8; e:16; f:10) | s (v:10; e:20; f:12) |- align=center !Truncated antiprisms |80px ts (v:16;e:24;f:10) |80px ts (v:24; e:36; f:14) |80px ts (v:32; e:48; f:18) |80px ts (v:40; e:60; f:22) |} 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Truncated square antiprism」の詳細全文を読む スポンサード リンク
|